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In this article, we consider cooperative control issues for
a multi-unmanned aerial vehicle (UAV) system. We propose
a cooperative formation control strategy with unidirectional
network connections between UAVs. Our strategy is to apply
a consensus-based algorithm to the UAVs so that they can
cooperatively fly in formation. First, we show that UAV mod-
els on the horizontal plane and in the vertical direction are
expressed as a fourth- and second-order system, respectively.
Then, we show that the stability discriminants of the multi-
UAV system on the horizontal plane and in the vertical direc-
tion are expressed as polynomials. For a network structure
composed of bidirectional or unidirectional network connec-
tions under the assumption that the network has a directed
spanning tree, we provide conditions for formation control
gains such that all roots of the polynomials have negative
real parts in order for the UAVs to asymptotically converge
to the positions for a desired formation by using the gener-
alized Routh stability criterion. The proposed control algo-
rithms are validated through simulations, and experiments
are performed on multiple commercial small UAVs to vali-
date the proposed control algorithm.

1 Introduction

In recent years, cooperative control problems with
multi-vehicle systems have attracted much research attention
[1]. Cooperative control technologies have enormous poten-
tial for application to vehicles such as Unmanned Aerial Ve-
hicles (UAVs), artificial satellites, and autonomous mobile
observation robots as well as distributed sensor networks. A
multi-vehicle system may be able to perform tasks more ef-
ficiently than a single highly functional vehicle.

In recent years, formation control problems for a multi-
vehicle system have been widely studied, and many control
algorithms have been developed for this purpose. A popular
formation control strategy is to apply a consensus algorithm

[2-T7].

In [5], the design of nonlinear decentralized controllers
is proposed to maintain a tight formation of a team of quad-
copters. Further, the effects of both the time delays and com-
munication failures in the network are studied and evaluated.

Some studies on consensus-based algorithms for coop-
erative control problems have assumed that vehicles can be
expressed as a first-order system [8—10]. The results of a
first-order system can be directly extended to a second-order
system [11]. Some researchers have mainly used compli-
cated methods such as an optimization approach [12] or Lin-
ear Matrix Inequality (LMI) [13].

In [14], the problem of simultaneous tracking and for-
mation control for multi autonomous agents system is ad-
dressed. The control and estimation architecture is placed
in a consensus framework. The solution is based on agents
evolve in a space that possesses a measurable vector field
(e.g., temperature, or magnetic field, ..., etc.). Their ap-
proach utilizes the concept of virtual leader and the graph
theory. Also, they consider the time-varying communication
issue inside the network. Furthermore, the tracking and for-
mation control is achieved in a two-level framework; one for
the virtual leader estimation and the other is for the formation
control.

In [15], the authors propose a solution to the formation
problem for teams of unicycles, as an example of a nonholo-
nomic mobile robot, based on the consensus algorithms and
potential fields. Stability of the proposed control framework
is studied. In addition, [16] presents an optimal and robust
formation algorithm for non-holonomic vehicles.

We have studied the cooperative control problems for
multi-vehicle systems [17-19] with a particular focus on
solving formation control problems using a consensus algo-
rithm.

In [17], we expressed the UAV dynamics on the horizon-
tal plane as a fourth-order system and proposed a consensus-



based control algorithm for a group of UAVs to fly in for-
mation cooperatively. The proposed approach is validated
via numerical simulations. In [18], we expressed the UAV
dynamics in the vertical direction as a second-order system
and proposed a consensus-based formation control algorithm
with collision-avoidance capability. In this work, the net-
work connections between the quadrotors must be bidirec-
tional.

In [19], we present a cooperative formation control strat-
egy for a multi-UAV system with unidirectional network
links. Our strategy is to apply a consensus-based algorithm
and leader-follower structure to the UAVs so that they can
cooperatively fly in formation in vertical direction only. In
addition, the network connections between the quadrotors
must be bidirectional. Moreover, experiments are performed
on multiple commercial small UAVs to validate the proposed
formation control algorithm with collision-avoidance capa-
bility. However, in our previous work, the network connec-
tions between UAVs must be bidirectional to ensure the sta-
bility of the proposed formation control algorithms.

The use of unidirectional network connections enables
more alternatives to the network structure. The consensus-
based control algorithm for a group of first-order systems can
accept bidirectional or unidirectional network connections if
the network structure has a directed spanning tree [10].

On the other hand, this does not apply to consensus-
based control algorithms for a group of second- or higher-
order systems. In this study, for a group of UAVs expressed
as a fourth-order system and another group expressed as a
second-order system, we provide conditions for formation
control algorithms under network structures with unidirec-
tional network connections between UAVs.

Our work builds on this literature but differs in many
ways. First, the network connection between the quadro-
tors is considered to be unidirectional. Second, we explicitly
model the team as fourth- and second-order systems. Third,
the proposed control framework has advantage that all the
agents do not have to directly connected to the leader and it
is sufficient for an agent to be connected with its neighbors.
Fourth, such a formulation permits a discussion of stability
and convergence properties of the system to the desired for-
mation shape given the communication and sensing graphs
by using the generalized Routh - Hurwitz criterion. Espe-
cially, the third and fourth ones should have strong novelties
and contributions in this field.

2 Problem statement
In this section, we describe how to model a quadrotor
and multi-UAV system and define the control objective.

2.1 Modeling a quadrotor

We assume N quadrotors with the same motion char-
acteristics. The multi-UAV system consists of N quadro-
tors and a leader. Each quadrotor has four propellers and
a controller. The propellers are individually given control
commands by the controller. To simply model the quadrotor

mathematically, we assume the following. First, the quadro-
tor flies slowly enough to ignore external aerodynamic forces
such as aerodynamic drag and a blade vortex interface acting
on the body. Second, the propellers respond to thrust com-
mands fast enough to ignore the time delay from when the
controller gives the propellers the thrust command until the
propellers actually produce the commanded thrust. Finally, a
yawing moment is never produced.

Under the condition that hovering at a constant altitude
is an equilibrium point of a nonlinear quadrotor system, a
linearized model of the quadrotor on a horizontal plane is
given by
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where rfk) € R? and M, i € R? are the state and control input,

respectively, of quadrotor i on the horizontal plane. The su-
perscript denotes the order of the variable, and the subscript
i indicates which quadrotor is being referred to.

Specifically, rfk)

O WO k€ {0,1,2,3}, i € {1,2,-- ,N}, when longitu-
dinal variables r)((k), k € {0,1,2,3}, are defined as r)(co> =x,
r)(cl) =u, r)(cz) = —g0, and r)(c3) = —gq, and lateral variables
rﬁk) ,k€{0,1,2,3}, are defined as r)(,o) =y, r§1> =v, A2 g0,
and ry@ = gp. Furthermore, M; is defined as the combined
vector M; = [— I%Me £ M,)T using the longitudinal con-
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(k)

is defined as the combined vector r;” =

trol input Mg and lateral control input M,. Note that the con-
troller input is a magnitude of the moment about the longi-
tudinal or lateral axes. The magnitude of the thrust that each
propeller should produce can be derived from the magnitude
of the moment using the geometric position of the propellers.

Under the same condition as the horizontal plane, the
linearized model of the quadrotor in the vertical direction is
given by

A .
= ! ) 16{1527“'71\7}7 (2)
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where 10 = h, KV = —w, and Typs1 = Tyora1/m. Note that
Tiora1/4 is equally assigned to each propeller. Table 1 defines
the above symbols.

2.2 Modeling a multi-UAV system

We can model a multi-UAV system as a group of dy-
namical systems where multiple UAVs and a leader exchange
information with each other. This network can be mathemat-
ically described using graph theory ( [20]).

We use the graph G = (V/, 4) to model information in-
teraction among N UAVs, where ¥ = {v|,va, -+ ,vy} is a



Table 1.

Definition of Symbols.

Symbol Definition

x,y (m) Position (x-axis, y-axis)

h (m) Altitude

u,v,w (m/s) Velocity (x-axis, y-axis, z-axis)
0, 0 (rad) Attitude angle (Roll, Pitch)
p,q (rad/s) Angular velocity (Roll, Pitch)
My, Mg (Nm)  Moment command (Roll, Pitch)
Tiotal (N) Total thrust command

I, Iy (kgm?)  Inertia moment (Roll, Pitch)

m (kg) Quadrotor mass

g (m/s?) Gravity constant

set of nodes and 4 € ¥ x V is a set of edges. The edge
(vi,v) in the edge set of the graph denotes a network path
from UAV i to UAV j. This means that UAV j can obtain
and use information from UAV i.

A directed tree is a digraph where every node, except
for one node called the root, has exactly one parent node.
The root has no parent and has a directed path to every other
node. A directed spanning tree of G is a tree that contains all
nodes of G.

Let 4 €e RVN D e RVN and £ € RYVN be an ad-
jacency matrix, degree matrix, and graph Laplacian matrix,
respectively, related to the graph G. The component of the
adjacency matrix 4 = [g;;] is given by

(€)

) L for (vj,v) €A
dij = 0, otherwise,

This means that g;; is set to 1 if UAV i is obtaining informa-
tion from UAV j through a network; otherwise, a;; is set to
0.

The degree matrix 9D is an in-degree matrix given by

D = diag(deg(v1),deg(v2), - ,deg(vy)), ©)
where deg(v;) is the number of communication links arriving
at node v;.

The graph Laplacian matrix £ is defined as

L=D—-A4, 5)
which can be calculated by
?1211 ayj  —an —AaIN  TA1(N+1)
—ajng le\]:ll aj ... —dasN 7(12(N+1)
L= : ()
—dani —aNz2 ... Z’f:f aNj —AaN(N+1)
0 0 .. 0 0

where a;; can be determined before the starting the team op-
eration as it depends on the network topology from as given
in (3).

The graph Laplacian has the following properties: if a
graph has or contains a directed spanning tree, the graph
Laplacian L has a single eigenvalue at zero, and all nonzero
eigenvalues of the graph Laplacian have a positive real part.

2.3 Control objective

We consider the following mission: N quadrotors fly in
formation following their leader in three-dimensional space.
Fig. 1 shows three quadrotors flying in formation while fol-
lowing their leader. In this figure, the UAVs are required to
make a triangular formation which resembles the one used in
[21]. However, each of the vehicles has an ability to arbitrar-
ily change the geometric configuration of formation. Note
that both an actual and a virtual leader are acceptable [22].

More specifically, each quadrotor converges to a time-
variant desired position. These positions are determined by
the desired geometric configuration of the formation.

To achieve this control objective, we make the following
assumptions:

Assumption 1.  The communication graph having a span-
ning tree with root at the leader.

Assumption 2. The movement of the leader must be in-
dependent of the quadrotors, i.e., must not be affected by any
of the quadrotors.

3 Proposed approach

In this section, we present our proposed control algo-
rithm to achieve the control objective given in Section 2.3.
As described in (1) and (2), the quadrotor model is expressed
as a fourth-order system on the horizontal plane and as a
second-order system in the vertical direction. Therefore, to
fly in formation in three-dimensional space, separate control
algorithms are applied for formation flying on the horizontal
plane and in the vertical direction.

3.1 Formation flying on horizontal plane
For formation flying, we consider the objectives of a
group of quadrotors and of each quadrotor separately. The
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Fig. 1. Desired formation for three UAVs and leader.



first objective is for the group of quadrotors to fly coopera-
tively in formation. The second objective is for each quadro-
tor to generate a geometric configuration of the formation.
We apply a consensus-based cooperative control algorithm
to achieve the former cooperative objective and a leader—
follower structure to achieve the latter individual objective.
The leader individually provides only the directly connected
quadrotors with its own position and desired positions for
formation. The advantages of our proposed control algo-
rithm are that all quadrotors do not necessarily need to be
directly connected to the leader and that it is sufficient for a
quadrotor to be connected with its neighbors if the network
structure satisfies assumptions 1 and 2. The control law for
quadrotor i is given by

i

N+1 3
MMZ%[IMW&>
j=1 k=0

i€ {1,2,-- N}, (7)

M =g e (1,2, N+1},
ke{0,1,2,3}, ®)

where subscript N + 1 denotes a leader and By € R, k €
{0,1,2,3}, are positive control gains. The gains must satisfy

conditions (9)—(14) for the desired formation flying. Further-

more, dy;) eER? ke {0,1,2,3}, is the desired relative state

between quadrotor j and the leader on the horizontal plane.
The states of the leader and the desired relative states are pro-
vided by the leader to only the directly connected quadrotors.
Note that a UAV must obtain information including the po-
sition, velocity, attitude angle, angular velocity, and desired
relative states from the connected quadrotors.

The following theorem for the desired convergence is
derived.

Theorem 1. Suppose that a multi-UAV system comprises
N(> 1) quadrotors expressed as (1) and a leader, and the
control protocol (7) is applied to each quadrotor. In addi-
tion, assumptions 1 and 2 are satisfied. Let A= Ag+i\; € C
be a nonzero eigenvalue of the graph Laplacian of a multi-
UAV system. When the control gains By for k € {0,1,2,3} are
selected so as to satisfy conditions (9) and (10) for the real
eigenvalues and when the control gains By, for k € {0,1,2,3}
are selected so as to satisfy conditions (9)—(14) for the com-
plex eigenvalues, then all states of the quadrotors on the hor-
izontal plane asymptotically converge to the desired states.

By >0, Vk€{0,1,2,3} )

(B1B2B3 — BoP3)Ar — BT > 0 (10)

83 =PB3Ar— P2 >0 (11)

B28s— 8, > 0 (12)

84 = (BT — BoB3Ax)A% — Bod3A7 > 0 (13)

B (81 (02 + B3 - Bipodd ) ~ Bl >0 (19

where 81 = B1B2 — BoBs and &, = B2B3Ar — B1.

Proof. By applying the control protocol (7) to quadrotor i
expressed as (1), we obtain

)

N+1 3
@2%[Bwﬁf%
j=1 k=0

ie{l1,2,--- N}. (15)

From the proof of Theorem 1 in [18], equation (15) can be
rewritten in matrix-vector form as

#0) Oon by Oy Ooy ||
AL L Oy Oy By Ogy || rD
H2) O Oy Oy D ||r?
i3 —BoM —B1 M —Bo M *|339i’f_ r3
[ ~(0)

02y 02y Oy Oy | |7 1(vlJ)r1

n O2n O2n Oy Oow || Fyiy

021~v 02{\/ 021)/ 02151 2(2)
BoM BiM B M B3 M

Oy Oy Oy Opn || Gr
| 02 0o Oaw Oz ||
0ov Oon Oy Oy
BoPM By ByM B3 || (3

where I, € R"" is an n-dimensional unit matrix and 0, €
R™" is an n-dimensional zero matrix. Furthermore, the
matrix M € RV is defined as (17), and M = M ®
I, where ® denotes the Kronecker product. In addi-
tion, r*) = [rgk)r r£k>T rg)T}T € R* and F](ﬁ] =1y®
P € RW, where 1y = [1 1 - 1]T € RY, and 4% =

@ a®" L aT e RN fork € {0,1,2,3).

N+1
Yijaj —an —aiy
N+1
—ay Yy @y ... —ax
M= . ) . (7
N1
—an1  —an2 ... X;0) anj



Note that the matrix M is generated by eliminating the last
row and column of the graph Laplacian L.

Now, consider the solution to differential equation (16).
To examine the stability of (16), consider the homogeneous
equation of (16) expressed as

pr = Mpra (18)

where p, = [r(O)T MOMOL r<3)T]T and the matrix Aj; is ex-
pressed as

Oonv Dy Oy Oy
(05 Oon by O2n
= 19
Ao Oy Oov Oy D (19)

—BoM —BiM —BoM B3 M

The stability of (18) is determined by the eigenvalues of the
matrix Aj. First, let A and s be an eigenvalue and eigenvector
of the matrix M, respectively:M's = As. In addition, let u,
and o, be an eigenvalue and eigenvector of the matrix A,
respectively: A0, = u,6,. Then, from (18), we can obtain
the next equality:

Mcr = M;Or, (20)
where G, is expressed as
(s®12)
Hr(s®12)
G, = 21
Hr(s®12) @D
1 (s®1z)

From the lowest row block of (19) and Ms = As, we can
obtain the following stability discriminant:

pif + Bahasd + PoMZ + Bihu +Bok = 0. (22)

Equation (21) shows the relationship between the eigenval-
ues of the matrix M and those of the matrix A;. Specifically,
this indicates that the matrix A} has four eigenvalues u, for
each eigenvalue A of the matrix M.

Here, we examine this relationship. From the defini-
tion of the two matrices, one of the eigenvalues of the graph
Laplacian L is zero, and everything other than the zero eigen-
value is equal to the eigenvalues of the matrix M. In general,
a graph Laplacian £ has a single eigenvalue at zero, and all
nonzero eigenvalues of the graph Laplacian have a positive
real part when the graph has a directed spanning tree. Satis-
fying assumptions 1 and 2 would indicate that the graph has
a directed spanning tree. Therefore, the graph Laplacian £
of the multi-UAV system has a single eigenvalue at zero, and
all nonzero eigenvalues of the graph Laplacian have a posi-
tive real part when assumptions 1 and 2 are satisfied. As a

result, all eigenvalues A of the matrix M have a positive real
part when assumptions 1 and 2 are satisfied: Az > 0.

Now, all real parts of the eigenvalues of the matrix A
must be negative so that all states of the quadrotors on the
horizontal plane can asymptotically converge to the desired
states.

First, consider the real eigenvalues A. In this case, equa-
tion (21) has only real coefficients. From the Routh-Hurwitz
stability criterion, control gains B, k € {0,1,2,3}, must sat-
isfy the following conditions for all real parts of u, to be
negative.

B()}\.>O, B17\.>O, 327\.>0, B37\.>0, (23)
B;\‘B by B?}" Bl)b 0 337\' le 0
i le >0, 1 BaAPBor|>0,Bor| 1 PBaABor|>0. (24)
2 0 B3k Pid 0 B3k Pir

From (23) and (24), we can obtain conditions (9)—(10).

Second, consider the complex eigenvalues A. In this
case, equation (21) has complex coefficients. We use The-
orem 2 in [23], which is the generalized Routh stability cri-
terion for the polynomials with complex coefficients, to pro-
vide the conditions for all real parts of u, to be negative. Ap-
plying Theorem 2, we can obtain conditions (9)—(14) for all
real parts of u, to be negative when the network satisfies as-
sumptions 1 and 2.

Applying these appropriate gains to controller (7) pro-
duces the following convergence:

limp, = 0.

=0

(25)

Next, we consider the particular solution of (16). One of
them can be given by

—
=)
=
—
=}

0

0) 7O (0)
1) ~(1) (1)
r 7 d;
o| =15+ o (26)
r d
3 In+1 r
r3) ~3) (3)
N+1 r

This validation can be confirmed by substituting (26) for
(16).

d£4) = 0 because the leader provides each quadrotor with the

desired state, not the desired input. Note that 7(4) =0 and

N+1 =
d£4) = 0 denote the input of the leader and the desired relative

input between the quadrotor and the leader, respectively.
The general solution of the nonhomogeneous differen-
tial equation (16) is the sum of the particular solution and
the general solution of the homogeneous equation. There-
fore, if the controller gains By for k € {0,1,2,3} are appro-
priately selected—that is, these gains are selected so as to

To confirm this validation, we use 7‘1(\21 =0 and



satisfy conditions (9)—(14)—the general solution asymptoti-
cally converges to

M 7

:(2) — ||+ Zzz) ,as f—oeo.  (27)
r r

0 A o
N+ r

This results in the convergence to only the commands from
the leader.

From the element of the first row block in (27), we prove
that formation flying on the horizontal plane is asymptot-
ically achieved when control protocol (7) with appropriate
controller gains B is applied to quadrotor i expressed as
(1). O

3.2 Formation flying in vertical direction

For formation flying in the vertical direction, we apply
almost the same control algorithm as that for formation fly-
ing on the horizontal plane. The difference is that the con-
trol algorithm for formation flying in the vertical direction
is based on a consensus-based algorithm for a second-order
system because the quadrotor model in the vertical direction
is expressed as a second-order system.

The control law for quadrotor i is given by

N+1 1
Tmmmza,,,.[ W i),
j=1 k=0
ic{l,2,---,N}, (28)
7k k K .
h(,):hi(].)_d;(lj)de{1’2’...’1\74_1}7
ke {0,1}, (29)

where subscript N + 1 denotes a leader and y, € R, k € {0, 1},
are positive control gains. Furthermore, d,S]? eR, ke {0,1},
is the desired relative state between quadrotor j and the
leader in the vertical direction. Note that a UAV must obtain
information including the altitude, rate of climb, and desired
relative states from the connected quadrotors.

The following theorem for the desired convergence is
derived.

Theorem 2.  Suppose that a multi-UAV system comprises
N(> 1) quadrotors expressed as (2) and a leader, and that
control protocol (28) is applied to each quadrotor. In addi-
tion, assumptions 1 and 2 are satisfied. Let A= Ag+i\; € C
be a nonzero eigenvalue of the graph Laplacian of a multi-
UAV system. When the control gains Yy for k € {0,1} are se-
lected so as to satisfy condition (30) for the real eigenvalues,
and when the control gains Yy for k € {0, 1} are selected so as

to satisfy conditions (30) and (31) for the complex eigenval-
ues, then all states of the quadrotors in the vertical direction
asymptotically converge to the desired states.

Y% >0, Vke{0,1} (30)

(YiAg —Y0)A +ViAg > 0 31)

Proof. By applying control protocol (28) to quadrotor i ex-
pressed as (2), and by using the same approach as the proof
of Theorem 1, Theorem 2 can be proved.

O

4 Simulation and experimental validation

In this section, we present simulation results to validate
the performance of the proposed control algorithms. In addi-
tion, we present the experimental validation of the proposed
control algorithm for application to a multi-UAV platform.

4.1 Simulation setup

We considered a group of three quadrotors and a leader
as well as the network with a directed spanning tree, as
shown in Fig. 2.

The leader flew in an elliptical trajectory at a constant
altitude. The major axis was 50 m, minor axis was 40 m, and
cycle was 400 s, where the initial position was [0 0 1.3] m.
Each quadrotor kept a certain distance from the leader and
a certain azimuth from the traveling direction of the leader.
The relative distance on the horizontal plane between each
quadrotor and the leader was 5 m, and the altitude gap be-
tween them was O m. The azimuth was the angle going coun-
terclockwise from the traveling direction of the leader. The
azimuths of the first, second, and third quadrotors were 0
deg, 90 deg, and 270 deg, respectively. The information on
the desired relative positions was provided by the leader.

Two simulations were conducted to validate the pro-
posed control algorithms. The difference between the two
simulations was in the control gains that were applied to the
control algorithms. In Case I, a set of control gains was
selected so as to satisfy conditions (9)—(14) and (30)—(31),
which would result in the desired convergence. On the other
hand, in Case II, a set of control gains was selected so as
to not satisfy these conditions, which would result in diver-
gence. The control gains for the formation on the horizontal
plane and in the vertical direction are shown in Table 3.

4.2 Experimental setup

We developed an experimental platform using the Parrot
AR.Drone 2.0, a small commercial UAV. The AR.Drone is
equipped with the following sensors: a three-axis accelerom-
eter, a three-axis gyroscope, a three-axis magnetometer, a
sonar sensor, a pressure sensor, and front and vertical cam-
eras. The data measured from the sensors and other infor-
mation on the states of the AR.Drone can be obtained in real
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Fig. 2. Network structure for simulations and experimental valida-
tion.

Table 2. Control gains.

Control gains Value
Bo, B1, B2, P3 (for convergence) | 1.0, 5.0, 20, 3.0
Bo, B1, B2, Ps3 (for divergence) | 1.0, 5.0, 20, 0.7
Yo, Y1 (for convergence) 29,39
Yo, Y1 (for divergence) 1.0, 0.13

time. The AR.Drones cannot communicate with each other
wirelessly; they do so through a control device via an ac-
cess point, as shown in Fig. 3. Therefore, data can be sent
wirelessly by all AR.Drones to a control device such as a
laptop in real time. However, the AR.Drone has several re-
strictions that affected our experiments: it cannot calculate
user commands on its onboard embedded computer; it can
only be controlled with attitude angle commands or a rate of
climb command; and it is not equipped with sensors that can
acquire the horizontal position precisely enough for experi-
mental validation. With regard to the first restriction, the lap-
top was used to calculate all commands for each AR.Drone
from the measured data. With regard to the second restric-
tion, the proposed control law outputs acceleration or mo-
ment commands, not attitude angle commands or a rate of
climb command. Therefore, the commands from the pro-
posed control law should be converted into equivalent com-
mands that the AR.Drone can accept.

Because of the third restriction and the safety consid-
erations of the experiments, only an experiment to validate
the formation control algorithm in the vertical direction with
control gains for convergence was conducted in this study.
The control gains and other parameters in the experiment
were the same as those in the simulations.

4.3 Simulation and experiment results
We present the simulation and experimental results here.
Figs. 4 and 5 show the simulation results for Case I and

Fig. 3. AR.Drone: control structure.

Figs. 7-9, those for Case II. Fig. 6 shows the simulation and
experimental results for Case I.

Figs. 4 and 7 show the trajectories of the quadrotors and
the leader on the horizontal plane and their positions every 10
s. Figs. 5 and 8 show the difference from the desired position
on the horizontal plane. Fig. 6 shows the altitude and rate of
descent. In Fig. 6, the solid lines illustrate the experimental
results, and the dotted line illustrates the simulation results
conducted under the same conditions as the experiments.

Figs. 4 and 5 show that each quadrotor converged to the
desired position for formation flying on the horizontal plane
when the proposed formation control algorithm on the hor-
izontal plane (7) with the control gains that satisfy the con-
ditions was applied to each quadrotor. On the other hand,
Figs. 7 and 8 show that each quadrotor was in divergence
when the proposed formation control algorithm on the hor-
izontal plane (7) with the control gains that did not satisfy
the conditions was applied to each quadrotor. These results
validate the control strategy for formation flying on the hori-
zontal plane and the conditions for the control gains.

Fig. 6 shows that the experimental results corresponded
with the simulation results and that each AR.Drone was able
to fly in formation at the desired altitude of 1.3 m when the
proposed formation control algorithm in the vertical direc-
tion (28) with the control gains that satisfy the conditions
was applied to each quadrotor. On the other hand, Fig. 9
shows that each quadrotor was in divergence when the pro-
posed formation control algorithm in the vertical direction
(28) with the control gains that did not satisfy the conditions
was applied to each quadrotor. These results validate the con-
trol strategy for formation flying in the vertical direction and
the conditions for the control gains.

25 T T T

Guadrotor (#1)
Quadrotor (#2)

———Quadrotor (#3)

Fig. 4. Trajectory on horizontal plane using formation control algo-
rithm (7) with control gains for convergence (Case I).

5 Conclusions

We have briefly demonstrated how to express a lin-
earized model of quadrotors and how to model a multi-UAV
system mathematically using graph theory and then provided
formation control algorithms for UAVs to cooperatively fly
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Fig. 5. Difference from the desired positions on horizontal plane us-
ing formation control algorithm (7) with control gains for convergence
(Case I).
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Fig. 6. Simulation and experimental results in vertical direction us-
ing formation control algorithm (28) with control gains for conver-
gence (Case |).
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Fig. 7. Trajectory on horizontal plane using formation control algo-
rithm (7) with control gains for divergence (Case ).

in formation in three-dimensional space. Separate forma-
tion control algorithms were applied to the quadrotors for the
horizontal plane and vertical direction. We showed that the
stability discriminants of the multi-UAV system on the hor-
izontal plane and in the vertical direction are expressed as
polynomials. For the network structures composed of bidi-
rectional or unidirectional network connections with the as-
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Fig. 8. Difference from the desired positions on horizontal plane us-
ing formation control algorithm (7) with control gains for divergence
(Case Il).
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Fig. 9. Simulation results in vertical direction using formation control
algorithm (28) with control gains for divergence (Case ).

sumption that the network has a directed spanning tree, we
provided conditions for formation control gains such that all
the roots of the polynomials have negative real parts, that is,
the UAVs can asymptotically converge to the positions for
desired formation by using the generalized Routh stability
criterion.

Our simulation and experimental results validated that
the proposed algorithms are effective for formation flying
under network structures with bidirectional or unidirectional
connections.  Furthermore, our experiments using three
AR .Drones also validated the proposed algorithm’s effective-



ness.

We developed an experimental platform using small

commercial UAVs. Although the UAVs lacked enough func-
tionality for full experimental validation, they were effec-
tive and economically efficient. We did not conduct exper-
iments to validate the formation control algorithm on the
horizontal plane because of a lack of a precise position sen-
sor. Therefore, developing an experimental platform by us-
ing precise positions on the horizontal plane and conducting
experiments to validate the formation control algorithm on
the horizontal plane remain challenging issues.
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